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Scattering operators on Fock space: IV. The algebra of 
operators commuting with an internal symmetry 
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Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA 

Received 18 January 1988, in final form 19 July 1988 

Abstract. An algebra of operators commuting with a given compact internal symmetry 
group action on a Fock space is introduced as a means for constructing unitary invariant 
operators on the Fock space. The algebra is generated by invariant polynomials and, in 
general, is an infinite-dimensional Lie algebra with a Cartan-Weyl structure. As an example, 
the algebra generated by the I = 2 representation of SO(3) is analysed. Irreducible 
representations of AS0(3) are given by raising operators acting on lowest-weight states; the 
coefficients which connect states generated by raising operators are computed. Some of 
the multiplicity appearing in an irreducible representation is dealt with by introducing an 
SL(2, R) subalgebra of AS0(3). 

1. Introduction 

This paper continues the investigation of unitary invariant operators on a symmetric 
Fock space generated by a compact internal symmetry group begun in Klink (1985, 
1987a, b) (hereafter referred to as I ,  11 and 111, respectively). We call such unitary 
invariant operators scattering operators, in analogy with operators that are unitary and 
invariant on a Fock space generated by unitary representations of the PoincarC group. 

A representation of scattering operators can be given by introducing the algebra 
of operators A that commutes with the compact group action on the Fock space. A 
scattering operator S can then be written as e i6 ,  where 4 is the phase operator. If 4 
is Hermitian and a polynomial in elements of A, then S will automatically be unitary 
and invariant on the Fock space. The main goal of this paper is to investigate the 
algebra of operators A that commutes with the underlying symmetry group. 

There are a number of reasons for investigating such algebras of operators. Mosh- 
insky (1984) and Moshinsky and Quesne (1970,1971) have introduced the notion of 
complementary groups, and more recently Howe (1985) has classified such groups (he 
calls them dual pairs). Given a Fock space generated by the fundamental representation 
of S O ( n )  (they also investigate SU(n) and Sp(n)), they find that such a dual Lie 
algebra of operators commuting with the S O ( n )  action on the Fock space is the Lie 
algebra of SL(2, R). In this paper we will generalise their results by asking: given a 
Fock space generated by any (finite-dimensional) representation of a compact group, 
what is a dual algebra of operators A commuting with the compact group action? It 
will turn out that, in general, A no longer is a finite-dimensional Lie algebra; neverthe- 
less, A still has a Cartan-Weyl structure, with diagonal and raising and lowering 
operators. Section 2 is devoted to a general analysis of A. Use is made of the 
isomorphism between symmetric Fock spaces and holomorphic Hilbert spaces intro- 
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duced in 11, so that all operators become multiplication and differentiation operators 
acting on polynomials of complex variables. 

Aside from its mathematical interest, the main reason for generalising the notion 
of complementary or dual pairs of groups is its relationship with the construction of 
scattering operations in particle physics. We are interested in constructing unitary 
invariant scattering operators on a Fock space generated by representations of the 
PoincarC group and an internal symmetry group. The algebra of operators that 
commutes with these groups should provide a convenient starting point for a 
phenomenological analysis of, for example, pion-nucleon scattering and production 
data. 

A third purpose of this paper is to generalise methods introduced by Arima and 
Iachello (1978) and Iachello and Levine (1982), in which the Hamiltonian of a 
non-relativistic quantum system such as a nuclear Hamiltonian or the Hamiltonian for 
a triatomic molecule is written in terms of boson operators on a symmetric Fock space. 
The quantum system specifies an N-dimensional multiplet of a given compact symmetry 
group (the s and d bosons in the interacting boson model), and then chains of subgroups 
between SU(N)  and the underlying symmetry group are introduced to deal with 
multiplicity. By using the algebra of operators A that commutes with the symmetry 
group, no chain of subgroups is required and all multiplicity is dealt with via the 
representations of A. This is shown in an example in § 3, where the infinite-dimensional 
Lie algebra of operators is constructed on the Fock space generated by the I = 2 
representation of SO(3) .  In § 4 irreducible representations of A:0(3) are constructed 
from raising operators acting on lowest-weight states. 

2. Holomorphic Hilbert spaces and generalised duality 

Let K be a compact internal symmetry group with a (not necessarily irreducible) 
representation space V of dimension N. The many-particle symmetric Fock space 
9’( V )  is defined as 

X 

Y ( V ) =  O ( V 0  . . .  0 v,:,, 
n = O  

where ( V 0  . . ,0 V):,, is the n-fold symmetrised tensor product of V. 
We want to find the dual Lie algebra A b  of operators that commutes with the 

action of K on 9’( V ) ;  this algebra of operators is much larger than just the Casimir 
operators of K. To find A ;  it is convenient to introduce a holomorphic Hilbert space 
HLL (Cook 1953, Segal 1956) which is isomorphic with ,CY( V ) .  Here HLL is the space 
of holomorphic functions in N complex variables, z = (z, , . . . , zN),  with norm 

The normalisation in equation (1) agrees with that given by Bargmann (1962). This 
choice is motivated by the requirements given in 11, equation (3), nameiy 

J d p G  exp( - j = l  2 zjwj) =exp(  - j = 1  2 lwj12/4). 
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This normalisation also agrees with the differentiation inner product given in Klink 
and Ton-That (1979). 

If il,. . . , iN is an orthonormal basis for V, an orthogonal basis in the n-particle 
subspace of Y( V) is Cl, 0. . . 0 i?,,? 1 sym.  The correspondence between Y( V) and H L L  
on each n-particle subspace is then given by 

i?,, 0 . . . 0 1 sym + z,, . * . Z,??. 
Such n-particle orthogonal basis elements can also be written as 

N 

Zr ; ,  * . . z>  C n, = n. 
1-1  

Creation and annihilation operators take on a very simple form in H L L ,  namely 

with [a i ,  a ; ]  = 8,. 
The action of an element g in GL(N, %) on f in HLL is given by 

V,f) ( z 1 = f( g -5 1 (2) 

and the infinitesimal action is 

(rijf) ( z )  = (2iDj.f) ( z ) .  (3)  

Each n-particle subspace of HLL is an irreducible subspace of GL(N, %) denoted by 
(n,  0,. . . , 0 )  in the Gel'fand notation. 

Since the compact Lie groups of interest in this paper are subgroups of GL( N, %), 
their action on HLL can be written as 

( r k f  1 ( z 1 = f( D - ' ( k )  z 1. (4) 

Here D( k )  is a matrix element of k E K with respect to the basis i , ,  . . . , iN in V. 
To find the algebra A; of operators commuting with r k  on HLL, we first look for 

functions in HLL that are invariant with respect to K, i.e. rk f = f V k  E K. Since 
polynomials form a basis in HLL , we look for a minimum set of invariant polynomials 
that generate all of the invariant polynomials. That such a set is finite is guaranteed 
by a theorem of Weyl (1946); see also Fogarty (1969). The easiest way to find such 
polynomials is to look for the identity representation of K in the m-fold tensor product 
subspaces. If the identity of K occurs in the m-fold tensor product, an invariant 
polynomial can be written as 

the superscript on p denoting the degree of the polynomial. C: :,::Et is a Clebsch- 
Gordan coefficient and is discussed in more detail in appendix 1. 

Assume now that a finite set of polynomials {p '" '}  has been found that are invariant 
under K and generate all of the invariant polynomials in HLL . Define raising operators 
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and lowering operators 

(X-"Z) P""f(Z) (7) 

where p"'( D )  means replacing each entry z ,  , . . . , zN in p"'( z )  with its corresponding 
differential operator, D,  = a / a z , ,  . . . , DN = a/azN. It is easily checked that X-"  is the 
adjoint of Xtm with respect to the inner product, equation (1). 

Both the raising operators X" and lowering operators X-" are elements of A;. 
New elements of A t  are obtained from the commutators [Xtm,X-"] .  (Note that 
[X", X+"] = 0.) By continuing to commute the new elements thus generated with 
the original raising and lowering operators, one arrives at either a finite-dimensional 
Lie algebra or the commutators do not close, resulting in an infinite-dimensional Lie 
algebra. 

The irreducible representations of A; can be used to distinguish the equivalent 
representations of K on HLL.  That is, the representation r k ,  equation (4), is highly 
reducible; since the operators in A t  by construction commute with r k ,  they will 
transform among the equivalent irreducible representations of K. 

Let plxi,,,n,)( z )  E HLL be the polynomial transforming as the irreducible representa- 
tion x of K, with i the label for the eigenvalues of a complete set of commuting 
observables in x. nmin is the smallest particle subspace in which x occurs and 7 is a 
multiplicity label needed if x occurs more than once in the nmin-particle subspace. 
Then a tower of polynomials all transforming as (x, i) are generated by writing 

n ( X t m )  k , r * P I , y i n , , , , ) ( Z )  k ,  = non-negative integer. 
m 

If A; is the largest algebra of operators commuting with rk ,  then 7 should be 
given by the eigenvalues of operators that commute among themselves in A;. Such 
operators are generated from commutators of the form [ X - " ,  X+"'].  Included in these 
operators is the number operator 

N 

fi= zjDj 
j = l  

whose eigenvalues are the non-negative integers labelling the particle subspaces. In 
general, there will be other operators in the commutators of [ X - m ,  X'"]  that we 
denote by X :  ; the superscript 0 indicates that X :  does not change the total particle 
number, as do the X". cy distinguishes the different X o  operators. Then 

[ X " ,  X i ]  = 0 ( 9 )  

since, if to the contrary, the commutators were of the form 

[ X I ,  xi] = c,,fi+C d S ; , ~ " , x  e z p X + m X - m  
Y m 

upon taking the adjoint of this equation, the left-hand side would go to its negative 
value, while the right-hand side would not change, which is only possible if [ X :  , X i ]  = 
0 and [fi, X : ]  = 0. 

The algebra Ab of operators commuting with K thus has a generating set consisting 
of raising and lowering operators X'", and operators X : ,  fi which commute among 
themselves. These operators generate a Cartan subalgebra, whose eigenvalues can be 
used to label elements in the irreducible representation spaces of Ab. An example of 
an infinite-dimensional algebra which has this structure is given in § 3. 
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As an example of a finite-dimensional Lie algebra, we consider the group K chosen 
in 11, namely S O ( N ) ,  with action 

( T R f ) ( Z )  = f ( R - ' z )  R E SO( N ) , ~ E  HL& . (10) 

Here the underlying representation space V is just the fundamental N-dimensional 
representation space of SO(N) .  If the symmetric tensor product of V with itself is 
taken, the identity representation occurs once. The polynomial ~ ' ~ ' ( z )  = z f  is 
clearly invariant with respect to SO( N) and of degree 2; all other invariant polynomials 
are powers of ~ ' ~ ' ( z ) .  A raising and lowering operator can then be defined as 

A new element of is obtained from the commutator 

[X- ' ,  X + 2 ]  = 2 N + 4 6  (12) 

where 6 is the number operator, equation (8). The elements { X * 2 ,  6) form a basis for 
the Lie algebra of SL(2, R). 

For N > 2 each representation (1, 0, . . . , 0) of SO( N )  occurs with infinite multiplicity 
in HL& ; as discussed in 11, these equivalent representations of SO( N )  are distinguished 
by n, the eigenvalue of the number operator 6, with the smallest value of n, nmin ,  given 
by nmin = 1, and n = 1, I+ 2, I+ 4, . . , . These infinite-dimensional representations of 
ALo"' are the discrete series of representations of SL(2, R). 

For N = 2, the group K = SO(2) has a natural two-dimensional reducible representa- 
tion, with 'charges' Q = *l as basis labels in V, as discussed in I, D 4. Here we note 
that it is more convenient to choose for z1 and z2 of HL: the labels z+ and z - ;  then 
the polynomial ~ ' ~ ' ( 2 )  = z+z- is invariant under the SO(2) action defined by 

( r , f ) ( z )  =f(eioz+, e-'"-). 

The algebras A%o"' just discussed are finite-dimensional Lie algebras of the sort 
discussed by Howe (1985) and Moshinsky and Quesne (1970,1971). The main point 
of this paper is to show that a much larger class of algebras, which are infinite 
dimensional but still have a Cartan structure, are generated by the procedure outlined 
in this section. In the next section an example is worked out which reveals this structure 
more clearly. 

3. The algebra A72i3) 

Let K = SO(3) and let V be the five-dimensional representation space of the 1 = 2 
representation of SO(3). Then a basis in V can be written as 12, m),  m = -2,. . . , 2 .  
9'( V) is isomorphic to HL: and zm corresponds to 12, m ) .  

The action of the Lie algebra of SO(3) on HL: is given by (see 111, equation (5)) 
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where c i  = [6-  m(m * l)]”’. It is easily seen that L, and L,  satisfy the usual SO(3) 
Lie algebra commutation relations. 

To construct the algebra of operators commuting with the SO(3) action on HL:, 
we need to find invariant polynomials p ‘ ” ( z ) .  They are discussed in appendix 1 and 
are of the form 

p ” ’ ( 2 )  = 2 2 2 2 - 2  - 2z,z- ,  + z: 
(14) 

There are, of course, fourth- and higher-order polynomials, but they are all functions 
of p ( ’ )  and p‘ , ’ .  

P‘”(z) = 1 2 ~ 2 ~ , ~ _ 2  + ~ Z , Z ~ Z - ,  - 2 ~ :  - 3&z2z?, - ~ & Z : Z - ~ ,  

The raising operators are now defined as 

along with the associated lowering operators X-’, X - 3 .  A new raising operator X+’ 
can be defined by 

[X-2,X+3]=6X+1.  (16) 

X+’  is no longer a multiplication operator, as are X” and X”. It is of the form 2 ’ 0 ;  

its actual form is given in appendix 2, equation (A2.1). The factor 6 in equation (16) 
is chosen for convenience. The adjoint of X+’ gives a lowering operator X-’ of the 
form zD’. 

These three raising and lowering operators can be commuted among themselves 
to give the following commutation relations: 

[x+2 ,  X+’] = 0 

[X-2,X+3]=6X+’ 

[ x + , ,  X + ~ ]  = 2x+’ [ Z’D, 2’1 - z3 (17c) 

[x-’, ,+’I = 4x+’  [ zD2, z’] - Z’D ( 1 7 4  

[X”, X+’] = 12(x+2)2 [ 2 2 0 ,  z’] - z4 (17e) 

[X-’,X+’]=84X+’+24Xt2fi [Z’D, z’]-z2+z30. (17f 1 
What distinguishes these commutators from those of a finite-dimensional Lie algebra 
are the quadratic terms on the right-hand side of equations (17e) and (17f) .  If (Xf2)* 
were defined as a new element, and the commutator of this element with X + ”  were 
computed, higher-order elements would result, leading to an infinite-dimensional Lie 
algebra. However, by leaving the commutators in  the form given in equation (17) ,  it 
can be shown that they, along with other commutators, close and satisfy Jacobi 
identities. 

The number operator fi appears in equation (17f). It also appears in the commutator 
of x*’: 

[ X - ’ ,  X+’] = 10+46  (18) 

[fi, X*2] = *2x” (19) 

which along with 
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gives the algebra of SL(2,R),  indicating that the SL(2, R) Lie algebra is a finite- 
dimensional subalgebra of A:0'3'. Other commutators of fi are 

[ fi, X*'] = *x*I 

[fi, X*'] = +3x'3 

justifying the notation that X+" (or X-") raises (lowers) the eigenvalue n of fi to 
n + m  (n -m) .  

The most interesting commutators are [X-I, X f l ]  and [X-', X+3], for they reveal 
the existence of a new Hermitian operator Xo, as discussed in § 2: 

[X-I, X+']= 12fi+ 16(fi)2+20Xf2X-2-6Xo 

[X-', X+3] = 420+ 252; - 36X+2X-2 + 18XO. 

Xo is a complicated operator, with 23 terms; as can be seen from the above commutators, 
it is of the form z2D2 .  The actual coefficients are given in appendix 2. 

The last commutation relations of AS0(3) all involve Xo: 

[XO, A ]  = 0 

[Xo, X+'] = 6X+'+ 8X"fi 

[Xo, X+2] = 20X+*+ 16Xf2fi 

[ Xo, X+3] = 42Xf3 + 24Xc3 fi. 
(23b) 

(23c) 
As discussed in 0 2, Xo commutes with fi, so these two operators generate a Cartan 
subalgebra. The remaining commutators, equation (23), show how the Xf"  act as 
raising operators for the eigenvalues of Xo. 

Finally, there is a quadratic Casimir operator for A:0'3' of the form 

C& = 4( fi)2 + 2fi - XO. (24) 
We have not been able to find higher-order Casimir operators, or show that higher- 
order Casimir operators do not exist. The Casimir operator for SO(3) is Cf$'3)= 
L-L+ + L: + L, ; after much tedious checking, it can be shown that Ch, = 
generalising the result of Howe (1985) that dual pairs have Casimir operators with 
common eigenvalues. 

Equations (17)-(23) give the commutation relations for the elements X", fi, and 
X o  of Since all of these elements commute with the SO(3) Lie algebra elements, 
equation (13), they can be used to distinguish between equivalent representations of 
SO(3) in HL;. The decomposition of n-fold symmetric tensor products of 1 = 2  
representations of SO(3) is quite complicated. In the table below, this decomposition 
is given for small values of n :  

GL(5, V?) 
L=O 1 2 3 4 5 6 7 8 9 10 Rep. Dim. 

n = O  X (00000) 1 
1 X ( 10000) 5 

3 X x x x  X (30000) 35 
4 X x x  x x  x x X (40000) 70 
5 X x x  x x x  x x x  x x X (50000) 126 

2 X X X (20000) 15 (25) 

We note that for a given value of n, the maximum L value is 2n, as expected. However, 
for values of L less than 2n, the pattern is not clear. Multiplicity begins with n =4;  
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there are two L = 2 and two L = 4 states. Note also that there are gaps in some towers; 
for example, for L=O, there is no state between n = O  and n = 2 ,  and similarly there 
is no  state for L = 3 between n = 3 and n = 5 ,  meaning that the raising operator X + '  
on such states must give 0. 

To conclude this section we construct several examples of polynomials representing 
states of definite L with multiplicity 1 in a number n subspace. States with multiplicity 
will be treated in the next section. Consider, for example, the state IL = 3 ,  L3 = 3 ,  n = 3 )  
which, according to ( 2 5 ) ,  has multiplicity 1. The polynomial corresponding to this 
state can be written as 

P 3 , 3 , 3 ) ( ~ )  = C C~Zm,2m2Zm3zmlzm2zm, 
m 1 m ~ m 3  

2 = c,z*z,zo+ c2z:+ c,z,z-, * 

Here C:;,i2i3 are Clebsch-Gordan coefficients which couple 2 0 2 0 2 I s y m  to L = 3, 
L3 = 3 states and the C, are the coefficients of the only polynomials that can contribute 
in the sum. 

should give zero since L3=3;  this 
results in 

Applying L,, equation (13b) ,  to 

pl3,3,3)(z) = 2z:z- 1 - d Z 2 z I  20  + 2: (26) 
whose norm, calculated from the differentiation inner product defined in Klink and 
Ton-That (1979), is given by 

( p l 3 , 3 , 3 ) , p / 3 , 3 , 3 ) )  = 4 x 2 ! + 6 + 3 ! = 2 0  

From this lowest element of the tower of L = 3  representations, other states can be 
obtained by using the raising operators. For example 

P13 ,3 ;4 ) (2 )  = x + 1 P / 3 , 3 ; 3 )  = 

P13,3;5)(z) = Xf2p13,3;3) 

(27) = (2z ,z-2-2zlz- l  +z0)(2Z:2- ,  2 -&z2z,z,+z:). 

Thus, once all the irreducible representations of AS0(31 have been given as lowest 
weights, all other states can be uniquely obtained by repeatedly using the raising 
operators. 

4. The structure of irreducible representations of AS0(3) 

Let I ( x )n ,  A )  be an  element in the irreducible representation space of AS0(31 labelled 
by ( x ) .  n and A are eigenvalues of n* and X o ,  respectively; here we have assumed that 
there are no other independent operators in ASot3' that commute with n* and X o .  Since 
the Casimir operator CA,  equation (24 ) ,  depends only on 6 and X o ,  and is equal to 

, we can write c S O ( 3 )  

4 n 2 + 2 n - A = L ( L + l )  ( 2 8 )  

and eliminate A as a state variable. Then x is L and a state can be written as lL, n ) .  
This will not yet uniquely label a state because of multiplicity. 
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Before dealing with this multiplicity, we consider the action of the operators X'" 
on IZ, n ) .  From equations (19) and (20) it follows that 

r i ~ * " l ~ n )  = ( n  * m)X*"ILn) 

X*"IL, n )  = cz"(L)IL, n * m) 

where c:"(L) are coefficients to be determined. 

tion L, 
In particular, if n = nmln ,  the lowest value of n allowed in the irreducible representa- 

X-"IL, nmln) = 0 m = 1 , 2 , 3  (30) 

and this defines the lowest weights of the irreducible representation L. As shown in 
appendix 3, for L even, nmln = L / 2 ,  and for L odd, nmln = f (L+3) .  

To determine the coefficients c i " (L ) ,  we first note that (L, n+mlXfmlL, n ) =  
c:"(L) = c,,,,(L)*,whereusehasbeenmadeoftheadjointofX" actingon(L, n + m ( .  
Thus, as with finite-dimensional Lie algebras, the coefficients for the lowering operators 
are related to those of the raising operators. 

Consider now commutators of the form [X-*,X+"], The simplest of these is 
[X-', X"], which, when applied to IL, n), gives 

I c;'( L)I2 - I c,*( L)I2 = 10+ 4n. 

/ C ; ~ , ~ ( L ) I *  = 10+4nm,,. (32) 

(31) 

If n = nmln,  then c,;,JL) = 0 (from equation (30)) and 

Equations (31) and (32), along with c,'(L)* = c : f 2 ( L )  define lci2(L)12 recursively; 
adding everything up gives 

I c ;:,n+2 ( L )  1 * = 1 0 ( k + 1 ) + 4 n ( k + 1 ) + 4 k ( k + 1 ) k = 0 ,  1 , 2 , . .  . .  (33) 

Equation (33) gives Ic;'(L)l2 only for n = nm,,+2k. To get these coefficients for 
states with n = nmln + 2k + 1, it is necessary to make use of the commutator [X-', X"], 
equation (21), applied to a state IL, n):  

Ic;'(L)I2- lc,'(L)1*= 12n + 16n*+201~,~(L)/ '-6A 

= 6L(L+ 1)+2O(~,*(L)I'-8n'. (34) 

I c ~ ~ , ~ ( L ) 1 2 = 6 L ( L + 1 ) - 8 n ~ , ,  (35) 

IC;:,"+I(L)I~ = 1 0 + 4 ( n m , n  + 1). 

For n = nmln,  this becomes 

and in particular X+'I L, nmln) = c;A,"(L)JL, n m l n +  1). Using equation (31) gives 

(36) 

Here use has been made of the commutation relation [X-2, ,+I ]  = 4X-' applied to 
lL, n m A :  

X-2Xf'IL, nmln)-X+'X-'IL, nmln)=4X-'/L, nmln)  

c;;,"( L)x-2/L,  nmln + 1) - 0 = 0 

from which it follows that ~ C ; : , ~ + ~ ( L ) I * =  0. 
Equations (31) and (36) can now be combined to give (~ ;~(L)I ' for  n = nm,,+2k+ 1: 

I C ~ ~ , ~ + ~ ~ + ~ ( L ) ~ *  = 10( k + 1) + 4nm,,( k +  1) +4( k +  1)' k = 0 ,  1 , 2  , . . . .  (37) 
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Equation (35) can also be used to show that there are no L= 1 states. If 
L= 1, then lc:i,n(l)12= 12-8n2,,,, and n m l n = $ ( L + 3 )  = 2  gives Ic:'(1)1*=-20, which 
is impossible. 

Note that for L=O and L = 3 ,  Ic;~,"(L)12=6L(L+1)-8nZ,,,=0 (i.e. for L=O, 
nmln  = 0, and  for L = 3, nmln  = 3). This means that the expression for IC:: . + 2 k T 1 ( L ) / *  is 
not valid for L=O, 3, since it was assumed in equation (36) that c : ; ,~ (L)#O.  To 
modify I c ~ : , ~ + ~ ~ + , ( L ) ( '  for those cases where c:;,"(L) = 0, we use the commutator 
[ X + 3 , X - 2 ] =  -6X+':  

X+3X-21L, nmln)  -X-2X+31L, nmln) = -6X+'IL, nmIn)  

o-c;:,"(L)x-*IL, nm,,+3)=0 

so c,:>,+~(L) = 0. Similarly, [x-I, ,+*I = 4 ~ + '  gives 

X-'X+'JL, nmln) - X+*X-' /L,  nmln) =4X"lL, nmln)  

c;:,n(L)x-llL, nm,,+2)-0=0 

which means c;; "+*( L )  = 0. 

[ X - 3 ,  Xt3] applied to IL, n ) :  
Finally, to compute Ic::,,+2k+3(L)12 when c:;,"( L )  = 0, use is made of the commutator 

/ ~ ~ ~ ( L ) 1 * - - 1 c ~ ~ ( L ) ( * = 4 2 0 + 2 5 2 n  - 3 6 ( ~ , ~ ( L ) 1 ~ +  18A 

= 420- 18L(L+ 1) +72n2+ 288n - 361c;*( L)12 

I c : : , ~ (  L )  )*  = 420 - 18 L( L + 1)2n kIn + 288 am,,,. 

\C; ; ,~+~(L)I~ = l o +  4(nmin+ 3). 

/ci:,n+Zk+3(L)/2 = 10(k + 1) + 4( nmin+3)( + 1) + k( + 1) 

(38) 

From equation (31) and the fact that IC;: n+3(L)/2 = 0, we get 

(39) 

Then the general coefficient for n = nmln  + 2 k + 3 becomes 

k = 0 ,  1 ,2  , . . . .  (40) 

Thus far we have assumed that, for a given value of L, a state can be uniquely 
labelled by n. However, multiplicity occurs for most states, which means n does not 
uniquely label a state. Just as with SU(3), where a state is not uniquely labelled by 
the third component of isospin and hypercharge, but needs an  additional label that is 
chosen to be the total isospin, so too with As0'3', an  additional label can be chosen 
as the eigenvalue of the Casimir operator of the SL(2, R) subalgebra. CSL'*,"' = 
(n^)*+3n^ -X+*X-* commutes with X=*, n*, X" and C A ,  but not with X" and X'3. 
Since towers of states have been constructed by the repeated use of Xf2,  resulting in 
states JL, nm,,+2k) and IL, nm,,+2k+l) ,  these towers will all have a fixed eigenvalue 

Now states with different eigenvalues of the SL(2,R) Casimir operator are 
orthogonal. States of multiplicity 2 already occur for n = nmln  + 2; we want to construct 
states with the same value of n = n m I n + 2  to have different eigenvalues of CsL(23"'. 
Consider Xt2/JL,  nmln) = c;f,(L)/L, n m l n +  2). In general, the state (X")'IL, nmln)  will 
not be proportional to IL, nmln+2).  So define new states (L ,  N; n ) ,  where N is the 
lowest value of n in the SL(2, R) tower, i.e. X-*IL, N; N)=O, which means 
CSL'2,"'  IL, N; n ) = ( N 2 + 3 N ) l L ,  N, n ) .  

of C S L ( 2 , ' w ' =  2 nmin+3nmin. 
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A linear combination of Xf21L, nmin)  and ( L ,  N = nmi,+2; nmio+2) can then be 

(41) 

written as the state (X")'IL, n m i n ) :  

(x+')'\L, nmin)  = ~x+'IL, n m i n ) + p \ ~ ,  nmin+2 ,  n, +2) 
where cy and p are constants to be determined. Applying X-2 to both sides of equation 
(41) gives 

x- ' (x+ ' )~~L,  nmin)  = ~X-'X+*IL, nmin) 
[ (Xt ' )2X-2+4(X+1X-1+ X-'X+')]lL, nmin) = cy(10+4nmi,)lL, nmin) 

where use has been made of the fact that X-21L, nmin+2,  nmin+2)=  0 and 
[X-', (X")'] = 4(Xt 'X- '+  X - ' X f l ) .  Using the commutator [X- ' ,  X"], equation 
(21) finally gives 

4[6L(L+ 1) -8ni i , ]  
10+ 4nmin 

f f =  

Knowledge of a can be used to calculate 1/31'; using equation (41) 

\pi2 = (L ,  n m i n l ( ( ~ - ' ) 2 -  U X - ~ ) ( ( X + ' ) ~ -  ~ x + ~ ) / L ,  nmin)  

which, after some tedious algebra, gives 

- 2 + 4nmi, 
5+2nmi, 3L(L+1)-4n$in 

Ip \ '=  [6L(L+ 1) -8nii,]2 (43) 

This result can be used to find when there is no multiplicity for n = nm," + 2 states, 
for then Ip/  = 0. For example, if L = 2 and nmln = 1, p = 0, indicating that the L = 2 ,  n = 3 
state has multiplicity 1. Similarly, if L = 5 and nmln = ;( LS 3) = 4, then p = 0, so the 
L = 5 ,  n = 6 state also has multiplicity 1. Conversely, when p # 0, the state n = nmln + 2 
will always have multiplicity 2 and the multiplicity is broken by the eigenvalues of the 
SL(2, R) Casimir operator. 

The states IL, nmln+2, n = nm,,+2+2k), k = 0 ,  1 , 2 , .  . . , c an  be written as 
(X+')k/L, n m l n +  2, nmln+ 2), and the coefficients C : ? > ~ + ~ + ~ ~ ( L )  determined from the 
recursion relation, equation ( l l ) ,  with c,?,"+*( L )  = 0. The result is 

Ic;2,,+2+2k(L)I2 = 10(k + 1) +4(nm,n+2)(k + 1) + k ( k +  1) k = 0 , 1 , 2  , . . . .  (44) 
If one tries to go to n = nmln + 3 and higher states, the multiplicity pattern becomes 

very complicated; we have not been able to find a general expression for the multiplicity 
of a state with given L and n and it is not clear whether the eigenvalues of CsL'23"' 
alone will break all the multiplicity. 

5. Conclusion 

The notion of dual pairs of groups can be generalised to include a much larger class 
than discussed by Moshinsky and Quesne (1970,1971) and Howe (1985). In this paper 
we have shown how to construct a dual algebra of operators that commutes with a 
compact group action on a Fock space generated by any finite-dimensional representa- 
tion space. 

The main idea is to replace the Fock space by an isomorphic holomorphic Hilbert 
space and look for polynomials that are invariant under the compact group action. It 
is always possible to find a finite set of such polynomials that generate all the remaining 
invariant polynomials. This finite set can be used to define raising and lowering 
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operators, whose commutators then generate a Lie algebra of operators that commutes 
with the compact group action. If the independent polynomial invariants are of first 
or second degree, the algebra will be finite dimensional and we recover the results of 
Moshinsky and Quesne (1970, 1971) and Howe (1985). 

However, if any of the independent polynomials are of degree greater than two, 
the resulting algebra will always be infinite dimensional. Such was the case for the 
algebra generated by the 1 = 2 representation of SO(3) discussed in 8 3. It seems likely 
that there is a very large class of infinite-dimensional Lie algebras generated by 
higher-degree invariant polynomials; what their relationship is-if any-io Virasoro 
or Kac-Moody algebras is not at all clear. It is also not clear under what circumstances 
these algebras can be exponentiated to give groups that are dual in the sense of Howe 
(1985). 

Once the structure of the algebra is known, its representations can be used to label 
all the equivalent representations of the compact group on the Fock space. The 
irreducible representations of the algebra are given by lowest weights and all other 
states can be reached by raising operators. In particular, if the polynomial realisation 
of a lowest weight is known, the polynomial realisation of any higher weight can be 
computed by using the concrete realisation of the raising operators as multiplication 
or differentiation operators. This means that the Clebsch-Gordan coefficients of any 
symmetric n-fold tensor product of any irreducible representation of a compact group 
can quite easily be computed. A simple example is given in appendix 1. 

Using the differentiation inner product, it is also quite easy to compute the matrix 
elements of algebra elements. This will be of interest in the succeeding paper, where 
the compact group is SU(3)fl,,,,,, and the representation space generating the Fock 
space comes from the eight pseudoscalar mesons. Such matrix elements are also of 
interest in other applications such as the interacting boson model in nuclear physics. 

and have shown 
that the irreducible representations of can be specified by lowest weights nmln 
relative to the lowering operators X-', X-2, X-3. Such lowest-weight states are unique 
and are labelled by the angular momentum L of S0(3),  with nmln = L/2 for L even 
and nmln = ;( L t 3) for L odd, the only exception being L = 1, which does not occur 
as an irreducible representation. 

From the lowest weight, all other states can be reached by applying the raising 
operators. But these states are not uniquely specified by L and n 2 nmln .  One way to 
deal with the multiplicity is to introduce the eigenvalue of the Casimir operator of the 
SL(2, R) subalgebra, or what is equivalent, to introduce as an additional state label 
N, the lowest weight in the SL(2, R) discrete series of representations. Then a general 
state can be written as I L, N, n )  where n 2 N 2 nmln and X-*J L, N, n = N )  = 0, with the 
eigenvalue of the SL(2, R) Casimir operator given by N ' t 3 N .  

Towers of states can be obtained from low-lying weights by applying the raising 
operator Xt2 k times. The simplest such tower is lL, N = nmln,  n = nmln +2k), k = 
0, 1 , 2 , .  . . ,with 

In this paper we have analysed in some detail the algebra of 

(x+')~IL, n m i n )  = c L ~ , , + ~ ~ ( L ) I L ,  n m i n ,  nmint2k). 

Similarly, another tower of states has the form I L, N = n m l n ,  n = nmln t 2k + 1) which 
are obtained from 

( x + ~ ) ~ ( x + ' ) I L  n m i n ) =  c ~ ~ , " + ~ ~ + ~ ( L ) c L ~ , , ( L ) / L ,  n m 1 n - t  1, nm,n+2k+ 1) 

where c:;,"(L) = [ 6 L ( L t  1) - 8 n ~ , n ] " 2  (equation (35)). 
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If c:;,"( L )  = 0, then the states in the tower n = nmln  + 2k + 3 are given by 

( X + 2 ) k X + 3 / L ,  nmin)  = c;~,,+~~+~(L)c~;,,(L)IL, nm1n+3, nmln+2k+3) 
with 

C;; ,~(L)  = [420-18L(L+ 1 )+72n~ ,n+288nm,n]"2  

(equation (38)). 
Multiplicity already appears for n = nmln + 2; states of the form IL, N = nmln + 2, n = 

2k + 2) will be orthogonal to IL, N = nmln ,  n = 2k + 2) because the eigenvalues of the 
SL(2, R) Casimir operator are different. Since by definition X-'IL, N = nmln+2,  n = 
N )  = 0, a new tower of orthogonal states is generated by 

where the state IL, nmIn+2,  nmln+2)  comes from the space of X+'\L, n m l n ,  nmln)  and 
( X + ' ) 2 ( L ,  nmln ,  nmln) (see equation (41)ff). Not all n = n m I n + 2  states have multiplicity; 
there is no multiplicity if /3 = 0 (equation (42)). 

All of the coefficients c;'( L )  in the preceding equations have the form C : 2 , , + 2 k + k 0 (  L) .  
The calculations for c i 2 ( L )  given in P 4, namely equations (33), (37), (40) and (44), 
with ko = 0, 1,3,  and 2, respectively, can all be combined into the general expression 

The justification for assuming c;"(L) is real comes from the concrete realisation 
of the states IL, N, n)  as polynomials. When the states are realised as polynomials, 
the raising operators become multiplication and differentiation operators, and when 
applied to the lowest-weight polynomials give the states IL, N, n) .  The c i " ( L )  
coefficients are computed from the norms of the polynomials and can also be chosen 
to be real. 

It is possible to continue the procedure whereby at level n 3 nmln+3,  the multiplicity 
of states is computed and new towers of states are generated with ( X + 2 ) k .  However, 
the analysis already is very complicated for n = nmln+3 ,  reflecting the fact that the 
general multiplicity structure of A:0'3' is very complicated. It remains to carry out a 
general multiplicity analysis and see if all the multiplicity can be dealt with using the 
eigenvalues of the SL(2, R)  Casimir operator. In fact, it is not even clear whether all 
of the irreducible representations of A;0(3) are given by n m l n =  L/2, L even and 
nmln=$(L+3),  L odd. It is, of course, always possible to determine the multiplicity 
structure for a given n by decomposing the symmetric n-fold tensor product of 1 = 2 
representations of SO(3) along the lines given in the appendix. However, while this 
is useful for practical calculations, it does not reveal very much about the general 
multiplicity structure. 

The complicated multiplicity structure makes the analysis of the irreducible rep- 
resentations of the infinite-dimensional Lie algebras A? more complicated than their 
finite-dimensional counterparts such as SL(2, R). However, in other respects, as seen 
in this paper, the towers of states are no more complicated for infinite-dimensional 
Lie algebras than for finite-dimensional ones. 

( X ' 2 ) k l L  nmIn+2, n = nmin+2)= c::,~+z~+~(L)IL, nmin+2, nmin+2k+2) 

C~21n+2k+k0(L) = [10(k+ 1)+4(%I"+ko+k)(k+ 1)I"2. 
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Appendix 1. Clebsch-Gordan coefficients and invariant polynomials 

It is often necessary to transform between symmetric n-fold tensor product states and 
states which transform as an irreducible representation of K. In particular, to compute 
the invariant polynomials which generate the algebra A b ,  it is necessary to know the 
Clebsch-Gordan coefficients for the identity representation of K in the decomposition 
of n-fold tensor products. 

Consider first individual particle states in the n-fold tensor product. They can be 
written as l{n,}), ZF, n, = n. The unnormalised polynomial corresponding to this state 
is n,=, .,”I. Its norm is given by (n l ! .  , . nhr!)”2, so that N 

N 

I{n,}) = I-I z:i(nl! . . . nN 
J = 1  

As discussed in § 2 ,  a state in the n-particle subspace transforming as the irreducible 
representation ,y of K, with basis labels i can be written as I,yinv), where 77 is a 
multiplicity label. Related to this state is the unnormalised polynomial pIxln,,). Then 

pIxlnsj( z) can be obtained from plxln,,,,,,,( z )  by using raising operators; plxlnm,nvj( z) is 
generally easy to compute by using raising operators in the Lie algebra of K, as 
discussed in the example at the end of $3 ,  equations (26) and ( 2 7 ) .  

Then 

For example, the polynomial given in equation (26), p 3,3,3j(z)  has norm l P 1 3 , 3 , ~ ) / 1  = 
&%, and a possible three-particle state is n2 = 2 ,  n-, = 1, all other n, = 0, which can be 
written as ~Iz ,o ,o , l ,o)(z)  = ( l / a ) z ; z - , .  Then 

n , n , n o n - , n - 2 ~ ~ 3 n  1 1 a2 d ----- ( 2,0,0, 1,013, 3; 3 > -  f i  d‘% az: dz-, p1”’3’’n=0 

The invariant polynomials p‘”(  z)  can always be written as Clebsch-Gordan 
coefficients which couple an m-fold tensor product to give the identity representation 
of K. The form is given in equation ( 5 ) .  However, now the polynomials are not known. 
They can be obtained by writing down the most general linear combination of m 
products of zi which give L3 = 0, and then using the raising operator L,, equation 
(13), to determine the actual linear combinations. When the polynomials ~ ‘ ~ ’ ( z )  and 
P ‘ ~ ’ (  z), equation (14), are normalised, the coefficients will then be the Clebsch-Gordan 
coefficients, equation ( 5 ) :  

llp‘2’IIZ = 4 + 4+ 2 !  = 10 

llp‘3’l12 = 122 + 62 + 4 x 3! + 9 x 6 x 2! + 9 x 6 x 2! = 420 
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3 2 3  1 
p^(”(z) = ( ;)1’2z2zoz-2+ (;) 1’2zlzoz-1 -- z;-- Z 2 Z - ,  -- m z:z-2 * m m  
So, for example, 

CO2 2 2 -  
0 2 - - 3 / m .  

Appendix 2. Concrete realisations of the (basis) operators of 
identities 

and Jacobi 

The operators X+’ and X + ,  were defined in equations (14) and (15) as multiplication 
operators. However, X+’ is not a multiplication operator. It is defined through the 
commutator [X-’, X+,] = 6Xc’ ,  which gives 

x+’= (4z2zo-&z:)D2+(2&z2z~,  - 2 z , z 0 ) D , + ( 4 z 2 z ~ , + 2 z , z ~ ,  -2z;)Do 

+ (2&Z,Z-,-2ZoZ-,)D-, + (4z0z-,-&zt,)D-,. (A2.1) 

By far the most complicated operator is X o ,  defined via the commutators [ X - I ,  X+’]  
and [X-’, X t3] ,  in equation ( 2 1 ) .  The commutator [X-’,  X+’] - [D3,  z 3 ] ,  so that the 
most general form of this commutator is 

[ X - 3 , X + 3 ] =  ~ ~ + b , n ^ + c , ( n ^ ) ~ + d ~ X + ~ X - ~ + e , X ~ .  (A2.2) 

The Jacobi identity 

[ X + l ,  [x-3, x+3]]+[x-3, [X+3, X+’]]+[X+’ ,  [ X + l ,  x-311 = o  
forces d ,  = -36, as well as giving relations between the other constants. 

by using the symbolic manipulation program S M P  on a VAX 11/780. The result is 
By using the known expressions for X + ,  and X-, ,  we have computed [X-’, X+’] 

[X-’, X+,]  =420+252n^-36&XO,+54XO,+36XO, (A2.3) 

where 
xi  = zZ_,D,D-,+ z:D2D0+ zoz-,D2, + Z2Z0DY+ ZIZ-2DOD-, 

x0, = z : D : + z ~ , D ~ ,  

+z~z-~D~D~+zZ~Z-~D~D-~+Z~ZOD~D-~ 

X :  = z;D;- 2ziDZD-2- z;D,D-, +~ZOZ-~DOD-~+~Z,Z-~D~D-~ - 2 ~ 2 ~ - 2 D i  

+ ~ z ~ z - ~ D ~ D - ~ + ~ z ~ z - ~ D ~ D - ~ + z ~ z _ ~ D ~ D - ~  - Z , Z - I D ~  
+ 2 2 ,  z- 1 D2D-2 + z1 ZOD, Do + 4z2zoD2 Do. (A2.4) 

Equating (A2.2) with (A2.3) gives a, = 420, b, = 252, c3 = 0,  and -36X+2X-2+ e3Xo = 
-36&X; + 54x0, + 36X%,  or 

(A2.5) 

All of the terms in X + 2 X - 2  appear in X“, We choose e, = 18 for convenience, which 
then defines X o .  

e,Xo = 18( -2&X0, + 3x0, + 2X: + 2 X 2 X - 2 ) .  

Similarly, the commutator of [ X - ’ ,  X+’]  can be written as 
[ x - I ,  x+’]= a , + b , n ^ + c , ( n ^ ) 2 + d , X + 2 X - 2 + e l X o  
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only now it is not necessary to explicitly work out the commutator, using equation 
(A2.1) and its adjoint. Rather, Jacobi identities can be used to give relations between 
the various terms in the commutators. For example, the Jacobi identity 

[x-', [X" ,  X"]]  +[x+l ,  [ X t 2 ,  x-3]]+ [x+2,  [x-3, X " ] ]  = 0 

can be used to show that a, = 0, b, + 3b, = 288,  c3 + 3 c ,  = 48, d3 + 3d, = 24,  and 
e3+3e,  = 0, resulting in equation (21). 

To fix the constants in the commutators for [ X o ,  X " ] ,  equation ( 2 3 ) ,  other Jacobi 
identities such as 

xo, [ X + ' ,  X " ] ] +  [ X + l ,  [ X t 3 ,  X " ] +  [ X i , ,  [ X " ,  X " ] ]  = 0 

can be used. Finally, many of the remaining Jacobi identities were used to check the 
overall consistency of the commutation relations. 

Appendix 3. Relation between L and lowest weight nmin 

If a symmetric n-fold tensor product of S 0 ( 3 ) ,  1 = 2 ,  representations is decomposed, 
the highest weight that occurs is L = 2n ,  which for L3 = 2n ,  is realised by the polynomial 
z ; .  Applying the SO(3) lowering operator L- of equation ( 1 3 )  results in the following 
sequence of states: 

2; 5 z ; - l z l  L- z;-2z: ,  z;- 'zo L- 2;-3z:, z;-2z,zo, z ; - 'z - l  - - 
L3 = 2 n  L, = 2 n  - 1 L, = 2 n  - 2 L 3 = 2 n - 3  

The L, = 2n - 1 state is part of the L = 2n multiplet. However, for L3 = 2 n  - 2 ,  one 
linear combination of the two possible states will be in L = 2 n ,  while the other will be 
in L = 2n - 2. But L = 2n - 2 already occurs as the highest weight in the ( n  - 1)-fold 
tensor product decomposition. For L, = 2 n  - 3 ,  the possible L values are L = 2n,  2 n  - 2 
and 2 n  -3 ,  with L =  2 n  - 3  occurring for the first time. Turning this around, for L 
even the lowest value of n is nmin  = L / 2 ,  whereas for L odd, L = 2nmin - 3 ,  or nmin = 

As a further check on this result, it is straightforward to show that X-" ,  m = 1 , 2 , 3 ,  
realised as differential operators acting on the L = 2n - 3 ,  L, = 2 n  - 3 polynomial states 
annihilate these states, indicating they are lowest-weight states. 

S(L+3) .  
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